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The problem of the equilibrium of a liquid enclosed in a vessel heated from 
brlow has been considered by Sorokin Cl], Iudovich and Ukhovskil [2] and 
Velt C33. It has been established that if the Rayleigh number X exceeds 
a certain critical value X0 , then secondary steady flows arise in the 
liquid. 

The stability of a conductive liquid heated from below has been studied 
by many authors. The most complete and general studies are those of Sorokin 
and Sushkin [4], whose paper contains the appropriate bibliography, and that 
of Shliomis [5]. The results of [4 and 53 make clear the physical picture 
of the phenomena associated with the heating of a conductive fluid and lndi- 
cate the possible existence of secondary steady and periodic flows., 

The existence of steady convective flows in a conductive liquid are proved 
below. Our study is based on the procedure set forth in [2]. 

Let us assume that the density p* 
tentirature p in linear fashion 

of the liquid is related to the 

P” = ~“(1 --AZ'*), AT* = T" _ 2',* 

Here c is the coef'flcient of volume expansion and co is the density of 
the liquid at the temperature To* . 

We know that a heated liquid can be in equilibrium only if the temperature 
T* at the point r+ Is of the form T*=To*+ $lr”, where I is a unit vector 
in the direction opposite that of the gravitational force. 

Henceforth we shall assume $ to be positive, writing the local temper- 
ature In the liquid in the form 

We shall consider the steady motions of the liquid in the bounded region 
R for a constant temperature gradient and a constant magnetic field in-the 
external medium. We Introduce the dimensionless variables 

Here v is the kinematic viscosity; L is the characteristic linear 
dimension; u , h are, respectively, the vectors of the liquid's velocity 
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and of the intensity of the magnetic field induced by the liquid's motion; 
x, are Cartesian coordinates; % Is the coefficient of heat conduction and 
c, the specific heat; 
the electric conductivizy; 

Is the coefficient of magnetic viscosity; a is 
u'. is the magnetic permeability. The asterisk 

denotes dimensional quantities. 
liquid [63 become 

The equations of the steady motion of the 

/III = - Ml - R,,$I,_.~ + V@ + (u.V) u - R, (h+V) h, ne=-uu,+P(u.v)e 

Ah=-RRRl~SI+Ra(u.V)h--R,(h.v)u, V.u=V.h=O 

A _aS.@ , PXY, 
XV x 

U~“U.1 

(1.1) 

Here k IS the Rayleigh number, P is the Prandtl number, R, Is the 
magnetic Reynolds number, R. is, the magnetic pressure number, p is thepres- 
sure, Q Is the acceleration due to gravity, H isths magnitude of the external mag- 
netic field intensity, and - uL Is the projection of the velocity on the 
direction of gravity. The x,-axis Is directed along the external magnetic 
field; In addition, the usual convention as regards the omission of the 
sign Indicating summation over a recurrent Index Is observed. 

The first equation of (1.1) yields the dynamic equations, the second the 
heat conduction equations, the third the Induction equations, and the fourth 
the lncompresslblllty equations. 

* the vessel Is completely filled and the vessel wall is an Ideal conduc- 
tor, then the boundary conditions with a constant temperature gradient in the 
external.medlum are as follows: 

8 = 0. u = 0, h.n = 0, rot her = 0 (I.21 

Here n is the normal and 7 Is an arbitrary vector tangent to the ves- 
sel walL XI . 

Equations (1.1) under boundary conditions (1.2) have a trivial solution 
corresponding to the liquid at rest, 

u=h=O. 8=0 (T* = i,* + filr*) (1.3) 

Along with problem (1.1),(1.2) we shall consider the. corresponding llne- 
ar,lzed steady-state problem 

Au= -j&N--R,,h,+V@, MI=-R,,,u,, AO=--uul,V~u=V~h=O (1.4) 

in n with boundary condition (1.2) at XI . 

0. Let us now define some function spaces. By H, we denote the Hllbert 
space which Is the closure of the set of sufficiently smooth solenoldal vec- 
tors finite In fI In the norm generated by the scalar product 

(2.1) 

The pace X, is the subspace which is a closure in the norm generated by 
the scalar product (2.1) of the set of continuously differentiable solenoldal 
vectors for which ha = 0 on 82 . 

The space H,, Is the closure of the set of sufficiently smooth functions 
finite In CJ In the norm generated by the scalar product 

(0, a),, = ( VO.V@ dx 

K 

(2.2) 

We know [7 and 83 that H,, X,, H, are imbeddable In L, . Thus, the 
above norms In the corresponding spaces are equivalent to the conventional 
norm W,’ . 
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Let us also introduce the Hilbert space H whose elements i are pairs 
UEH,, hEHht and where the scalar products f = (u,hj and rf = {\.,+f are 
defined by Formula 

le. 'p)H =fu> v)HIL+(h, 9)~~ (M) 

The generalized solution of problem (1.1),(1.2) Is the triplet II E II,,, 
h E lit,. 0 E H,. which satisfies the Integral Identities 

The results of Ladyzhenskaia and Solonnikov [7 and 91 Indicate that the 
generalized solutions of problem (1:1),(1.2) are doubly continuously dlffer- 
entiable (*) In 'A and that they satisfy boundary conditions (1.2). 

The generalized solution for linear problem (1.4) Is determined In the 
same way. 

3. L& us reduce problem (2.4) to operator equations. For sufficiently 
smooth functions VU, Pa, 8 , B we define the operators K~~K~,K~,K~ by 
the requirement that the integral Identities 

(k’,Fw V)[I, = s Fuv dx, (&,Fh, @),= ’ F& dxr 
51 a 61 0, @)H, = a ’ @Ild.c (3.1) 

(KfF, f),=(R,F,,V),U+(KIIFh~ (If)gh (3.2). 

be fulfilled for any VE &, +f% Hh, @f Hi, f E H. 
t e m m a 3.1 . The operators Kf,K,,Kl,,Ko are bounded and completely 

continuous. Let us prove this for the operator Ku . The boundedness of the 
operator follows from the estimate 

(3.3) 

and from the lmbedding of X, In L, . The complete continuity c8 and lo] 
of the imbedding from H. in L, and estimate (3.3) imply the complete con- 
tinuity of Ku . 

The heat conduction equation becomes the operator equation 

6 + PK, (u. v) f!i - Koul (3.4) 

With ~~-0 the homogeneous equation 0 f PK&.v)~=O has only a triv- 
ial solution In H, . In fact, taking its scalar product with e , we have 

(07 0)1,@ -i- 1 Pi', (u-V) 6 o),,, = (e, e),, + P 
s 

(u.v)eeb= 

0 

*) Pollowlng Vorovich and Iudovlch [ES], we can prove that derivatives of 
the functions U, h, 0 of any order are continuous In the closed region R 
If the boundary Xl is sufficiently smooth. 
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The Fredholm theorem Implies that (3.4) is solvable for any UEH,, Equa- 
tion (3.4) is determined by the operator 

0 -: Au. 

We shall now show that A is a bounded operator acting from Hu into H.. 

Taking the scalar product of (3.4) and 8, , we find, as above, that 

The imbaddlng of He in L, implies the boundedness of the operator A . 
System (2.4) becomes the .system 

u - R,K,h,, = lx,. lu - Kz,(u.V)u i_ N,K,(h.V) b 

h-R,Khu,=--K,Kh(u.V)hi-R,KI,(h.v}u (3.5) 

or, in the space K , Equation 

I- fl,Klf = hK,f+K,f (K ,f= K ,A4 

L e m m a 3.2 . The operators .K,, K,, K, are bounded and completely 
continuous. 

The Lemma follows from the complete continuity of the operators Ku and 
r(h - Let us show, for example, the complete continuity of the operator 
Bf =Kh (U*V) h, which acts from H into H, . We have 

(Bf, @Hh=(J$, (n.VlhAH,~ = \ (u.V)h%dx= - 1 h(u.V)qdx (3.6) 

B sa 
From this we have the estimate 

(BE, g)Hk <Cl II* liHh iIu k,llh lit, 

Replacing cp by B? , we obtain 

lisfllHdcIIuUH,jlhjjEIh~CjjfjlaH (3.7) 

which implies the boundedness of the operator 3 . 
From (3.6) we find (*) that for some sequence fCn' 

When $ has been replaced by i$f@) -Bff@ the complete continuity of 
the operators (8 and 101 from X, into L1 implies the complete continuity 
of the operator 3 . 

The operator in the left-hand side of (3.5) Is Invertible. 

In fact, taking the scalar product of (3.5) and i and setting the rlght- 
hand side equal to zero, we obtain 

(f, f)H -Rm(Kl f, f),==O 

but 

So that 
sa 

(f, f)H = 0, f-0 

&T the Fredholm theorem, the completely continuous operator I -f1.xl has 
an inverse L which is bounded. In fact, by virtue of (3.81, 

*) Notation: II f IL, = II u lb,, + II h /IL,. 
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This implies [ll] the boundedness and (by virtue of its linearity) the 
continuity of the operator L . 

System (3.5) or (1.1) is thus equivalent to the operator equaticn 

f = hLK,f -k Lk’,f zK (f, h) (3.9) 

Similarly, linear system (1.4) becomes the system 

u - RJL-$, = liKll (K& I, h - R,KhU1.* = 0 
. . 

(3.10) 

with the corresponding operator equation 

f = /LK;, (Real) I (3.11) 

Since the operator L is continuous and the operators K, and .Ys com- 
pletely continuous, the operator K In (3.9 is completely continuous. We 
shall show that the right-hand side of (3.11 is the Frechet differential of 1 
the operator i? . To do this we must demonstrate that 

llfi: tK Q --&Ah; (+J1jlH = IIhLk'zf - UK% (~*u~)l + Lft’,fllH f cl f{& 

E!y virtue of the linearity of the operators L and VU it is sufficient 
to estimate 

II Au -Keur llH,* It Ksf,IIH 

The estimate of the operator 
ence Au - Keur (3.4) gives us 

K3 follows from (3.7), while for the differ- 

j(~u-K&, aS),,i=Pl f(U.V)eQ,~l~C~ll~~l~,lluI~~ii~ii~, 
h 

Setting CD = Au -I(T& and making the substitution 8 - AU , by virtue 
of the boundedness of the operator A we have 

IIAU- ~e~rIl~,G~‘lt~ll~~S~IlfI~ 

tlozi (1.1),(1.2) which are different from (1.4). 
Let us consider the possibility of the existence of steady-state solu- 

Let 

where the lower'bound is taken over all the solenoldal vector functions 
UEH,. 

In [2 and 33 it is shown that X ,, is the critical Rayleigh number for the 
steady-convection equations. 
following theorem is valid. 

If an external magnetic field is .present, the 

T h e o r e m 4.1. 
then h > )10 . 

If problem (1.1),(1.2) has a nontrivial solution, 

Let problem (1.1),(1.2) have a nontrivial sol&Ion. Taking the se;rlar 
products of (1.1) and U, h, )i, 6 and adding, we obtain 

(u, ufHu+(h, hfHh-t-h [(e, B)Ha-2f~I, 6)]= o (5.3) 

As is evident from 4.2 and the unique solvability of (3.4), the solu- 
tion of problem (l.l), 1.2 differs from zero only for u,# 0 . I I 

It Is well known [12] that 

minI(%e)Bs --2(+ eU= -(K,+ &PI 1~~ 

where the rn~nirn~ is taken over all 8 E He. 

From (4.2) it follows that: 

and by virtue of (4.1) we find that X0+-k < 0 . The theorem has been proved. 

The theorem Implies that with )i i h ,,, problem (1.1),(1.2) has only a 
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trivial solution. Thus, the critical Raylelgh number does not diminish upon 
the Imposition of an external magnetic field. The constant magnetic field 
stabilizes the equlllbrlum of the liquid. 

Let us make use of the theory of bifurcations of nonlinear operator equa- 
tions [13 In our search for steady-state solutions of (3.9) which differ 
from (1.3 j . 

The real number I1 Is called the bifurcation point of the operator K 
if for any E 6 > 0 It is osslble to indicate an elgenvalue X 
operator K s;chthat IX-k1 < 6 P 

of the 
and that Equation (3.9) has at least 

one elgenvector t such that l(il(H< e . 

The results of Krasnosel'skll.[l3] imply that the bifurcation points of 
~';~I;p~rator K can only be the elgenvalues of Its Frechet differential 

If i1 I an eigenvalue of problem (3.10), Is of odd multiplicity (*), then 
k1 Is the bifurcation point of the operator K . Corresponding to this point 
Is a continuous branch of the elgenvectors of operator K . The parameter 
A Is real and positive. 

Let us prove 
tor5dquatlon (3.11) 

Replacing u in 
Induction equation, 

the existence of positive elgenvalues of (3.11). Opera- 
Is equivalent to system (3.10). 

the dynamic equation by its value as determined from the 
we reduce (3.10) to an operator equation for u , 

(5.1) 

After determining u from (5.1), we find h and 0 from the Induction 
and heat conduction equations, 

h = R,K,&. 0 = KOUl 

The operator In the rlght- and left-hand sides of (5.1) are linear, posl- 
tlve, completely continuous, and selfadjoint In H, . In fact, 

This implies the following theorems and lemma. 

There exists a denumerable number of elgenvalues 
G&-+03. The corresponding system of 

y, ha) Is complete in H . (The system aa Is complete in Ho). 

Lemma 5.1. The elgenfunctlons which corresond to various elgen- 
values i and k* of Equations (1.4.) satisfy the following orthogonallty 
conditions: 

(u, u’jH 
u 

;t (h, h*)H,r :== (f, f*)H = 0, (0, e*)He = 0 (5.2) 

Any elgenvalue X, with an odd number of associated eigenvectors 1s a 
bifurcation point of Equation (1.1). 

As In [2 and 123, the problem of finding the elgenvalues and elgenfunc- 
tlons of (5.1) can be reduced to the problem of mlnlmlzing the functlonal(**) 

l ) The multlpllclty of the elgenvalue A of the operator K Is the dlmen- 
slonallty of the subspace spanning the elgen- and adjoint vectors correspond- 
lng to the characteristic number 1 . 

-) The equivalence of problem (1.4) to 
B 

variational problem (which differs 
somewhat from (5.3)) Is demonstrated In 43. 
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Theorem 5.2. The problem of finding the elgenvalues and eigen- 
functions of system (1.4) Is equivalent to the mlnlmum problem for functional 
(5.3). 

Let us show that functlolial (5.2) is bounded from below. 

In fact, by the ~auchy-B~iakows~ inequality, 

and making use of the Polncare IneqUalIty, 

f 
02dz<Cc1 

I 
* Vf3.VB fix = Cr (&$Jp Ke% ke 

n n 

and the theorem of imbedding of in La we obtain 

tKe% J%Q6 C (u, u)H 
U 

From (5.3) and (5.4) we find that 

J (U)ZC1 

(5.4) 

The ~n~rn~ roblem for functional (5.3) has a8 its consequence the fol- 
lowing theorem P 123. 

Theorem 5.3. 
J(u) . 

Let A, be the exact lower bound of the functional 
Then, there exists a vector-fQnatlon U,EH, such that J(s) - X1, 

where A, Is the smallest el envalue, and U, (g, B1, respectively) Is the 
elgenfunctSon of system (1.4 f . 

T h e o r e m 
(1.4), and let fu., 

5.4 . Let Og~r<hn<~... <ha be the eigenvalues of 

in the sense of ( 
h,) be their assoaiated ei@nfunctions orthonormalized 

.2). Then, there exists a function u,+lE&, which mini- 
mizes functional 5.2) under the additional conditions 

(U n+l' u,),+ (&.lr h&4 = O, @s;l* e,),,=" (m = 1, 2 . ..n) 

where h,,, , en+1 can be determined from u,+~ from the Induction and heat 
conduction equations. 

The triplet ye1 # 4+1 * 8041 Is the elgenfunction of (1.4) which aor- 
responds to the number 

&l+l = J obacl) 
In actual computations, it Is more convenient to write (5.2) In the form 

Here h and 8 are the solutions of the linear induction and heat con- 
duction equations of (1.4) with boundary conditions (1.2). SMlar results 
are obtainable in the case where the liquid ia enclosed in a dielectric. 
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REMARK ON THE PAPERS BY R,V,BIRIKH 

“ONsmdlPxmm~~ PEmsmEATIoNB OF PLANS+PARALISL cm FLOW” 
Pm vo1.29, m 4, 1965, urd 

"WOWALL mTIQs8 OF A PLANE-P- BLOW WITH CUBIC VELOCITY PROFILE" 

Pm vo1.30, No 0, 1966 

~~ X RABOTABZ R.V.XRZXHA 
"0 spektre malykh vozmushchenil ploskoparallel'nogo techeniia Kuetta" 

PMM T.29, Vyp.4, 1965, I 

"0 malykh vozmushcheniiakh ploskoparallel'nogo techeniia s kublcheskim 

profllem skorostltl PMM T.30, Vyp.2, 1966) 

PMM Vo1.30, NO 6, 1966, ~‘1147 

R.V.BIRJ.KR 
(Perm') 

In the second of the above papers , when the spectrum of decrements of normal 
perturbations of a flow with cubic velocity profile was discussed, the pos- 
sibility was indicated of the existence of a vibrational instability In this 
flow at high Reynolds numbers. In order to verify this hypothesis, a new 


