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The problem of the equilibrium of a liquid enclosed in a vessel heated from
below has been considered by Sorokin [1], Iudovich and Ukhovskii [2] and
Velt [3]. It has been established that if the Raylelgh number X eXxceeds
a certain critical value 1}, , then secondary steady flows arise in the
liquid.

The stability of a conductive liguid heated from below has been studied
by many authors. The most complete and general studles are those of Sorokin
and Sushkin [4], whose paper contains the appropriate bibliography, and that
of Shliomis [5]. The results of [4 and 5] make clear the physical plcture
of the phenomena assoclated with the heating of a conductive fluld and indi-
cate the possible existence of secondary steady and perilodic flows.

The existence of steady convective flows in a conductive liquid are proved
below. Our study 1s based on the procedure set forth in [2].

1. Let us assume that the density p* of the liquid i1s relateéd to the
temperature 7* in linear fashion

0% = py (1 — @ AT*), AT* = T* — T¢*

Here g 1s the coefficient of volume expansion and p, is the density of
the liquld at the temperature To* .

We know that a heated liquid can be in equilibrium only if the temperature
7* at the point »* is of the form 7T%=7,%+ glr*, where 1 1s a unlt vector
in the direction opposite that of the gravitational force.

Henceforth we shall assume 8 to be positive, writing the local temper=-
ature in the liquld in the form

T#* = Tg* -} Blr* 1 @*
We shall consider the steady motions of the liquid in the bounded reglon

i for a constant temperature gradient and a constant magnetic fleld in the
external medium. We introduce the dimensionless varilables

s : 17 / /
U* = —}—— u, h* el (-_Lfvj ) * h, T* == B_LV ]’, 0* = .?E_ N xi* = L”i
” HelimM} b “

‘/ L == {:80_ == r'-')\
x\y CU * T} (l"’{")) )

Here v 1s the kinematic viscosity; L 1s the characteristic linear
dimension; W , h are, respectively, the vectors of the liquid's veloclty
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and of the intensity of the magnetic fleld induced by the liquid's motion;

x, are Carteslan coordinates; * 1z the coefficient of heat conduction and
¢, the specific heat; n 1s the coefficient of magnetic viscosity; o 1is

the electrlc conductivity; u, 1s the magnetic permeability. The asterisk

denotes_dimensional quantitles. The equations of the steady motlon of the

1iquid [6] become

Au = 161 — R b, + VO 4 (u-V)u— R (h-)h, Ab=—u, 4 P{u-v)0

Ah=—Rmux3+RO(U‘V)h—Ra(h‘V)U, VUZV'hZO

0= [ 2 4 el — gle* - ag (1] (1.1)
— aBglt p=_" R :HL(J'e_)"’ = Ou —u.
A xw % m ooy / R w=ul

Here ) 1is the Rayleigh number, P 1s the Prandtl number, R, 1s the
magnetic Reynolds number, R, 1s the magnetic pressure number, p 1s the pres-
sure, ¢ 1is the acceleration due to gravity, # 1s the magnitude of the external mag-
netic field intensity, and - uy 1s the proJection of the velocity on the
direction of gravity. The x,-axis 1s directed along the external magnetic
field; 11 addition, the usual convention as regards the omission of the
sign indicating summation over a recurrent index 1is observed.

The first equation of (1.1) ylelds the dynamic equations, the second the
heat conduction equations, the third the induction equations, and the fourth
the incompressibility equations.

Pr the vessel is completely filled and the vessel wall is an 1ldeal conduc=-
tor, then the boundary conditions with a constant temperature gradient in the
external -medium are as follows:

0=0. u=0, hn=0 rotht=0 (1.2)
Here n 1s the normal and T 1s an arbitrary vector tangent to the ves-
sel wall aQ .

Equations (1.1) under boundary conditions (1.2) have a trivial solution
corresponding to the 1liquid at rest,

u=h=0 0=0 (T* = To* + plr%) (1.3)

Along with problem (1.1),(1.2) we shall consider the corresponding line-
arized steady-state problem

Au=—A0l— R h, + VO, Abh=m—R,u,, Ab=—u, Vu=V-h=0 (14)
in 0 with boundary condition (1.2) at an .

2. Let us now define some function spaces. By #H, we denoté the Hilbert
space which is the closure of the set of sufficlently smooth solenoldal vec-
tors finite in Q 1in the norm generated by the scalar product

(u, V)Hu.—:Sb U Vi, dx =§a rot u-rot vdx 2.9)

The pace X, 1s the subspace which is a closure 1n the norm generated by
the scalar product (2.1) of the set of contlnuously differentiable solenoidal
vectors for which hei = O on 23Q .

The space H, 1s the closure of the set of sufficiently smooth functions
finite in Q 1n the norm generated by the scalar product

(0, D)y, =§ V6. VD do (2.2)

o

We know [7 and 8) that X,, H,, He¢ are imbeddable in L, . Thus, the
above norms in the corresponding spaces are equivalent to the conventional
norm W,'.
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Let us also introduce the Hilbert space # whose elements £ are pailrs
we H,, h& Hy, and where the scalar products f= {gh} and g = {v} are

defined by Formula (£, 2y = (, V)Hu+ (h, \p)Hh 2.3}

The generalized solutlon of problem (1.1),(1.2) 1s the triplet u & H,,
he Hi, 0 =H, which satisfles the integral identities

(u, V)Huzli Ou;dx + ng’ hxsvdx—S (u-Vyuvder 4 RGS th-Vyhvdz
e 5]

(b, )y, = ng u, W dz — Rai (u-V) hp dz + RGS (h-V) up do (2.4)
o] Q

(9,(Dst=§)ul(Dda:——P§‘(u~V.)ﬁ(Ddx, veH, teH, o,

The results of Ladyzhenskala and Solonnikov {7 and 9] indicate that the
generalized solutions of problem (1.1),{(1.2) are doubly continuously differ-
entiable (*) in O and that they satlsfy boundary conditions (1.2).

The generalized solution for linear problem (1.4) 1is determined in the
same way.

3. Lét us reduce problem (2.4) to operator equations. For sufficlently

smooth functions F,, ¥,, 8 , F we define the operators K, KnK¢K; by
the requirement that the integral identities

(KuFy, v),qug Fvde, (KxFn W, = }.Fh‘p ds, (Kq 0, o)He:; 0Dde  (3.4)
Q

(K¢F, B)g = (K Fy, Vg + KnFp O, 3.2).

be fulfilled for any v H,, ¢< Hy, D H, < H
Lemma 3.1 . The operators K, Ku KKy are bounded and completely

continuous. Let us prove this for the operator X, . The boundedness of the
operator follows from the estimate
* i .78 1
| (KyF, V) | = b Fv dx’fg (S Fz(u)”(g vzdx)" (3.3)
2 Q

and from the imbedding of A, in L, . The complete continuity [8 and 10]
of the imbedding from H, in L, and estimate (3.3) imply the complete con-
tinuity of &,

The heat conduction equation becomes the operator equation
6+PK9(u-V)e:K9ul (3.4)

With wu, =0 the homogeneous equation 8+ PK a(u-V)B =0 nas only a triv~
ial solution in H9 . In fact, taking its scalar product with g , we have

(6,0), - P (Kg(u-V) 0, 0),; = (9, 8),,. + P\ (u-V)00dz=
9 8 Hy
. £
== (6, 0)y, — PS 126°V - udr = (8,0),; =0
O

#*) FPollowing Vorovich and Iudovich [8], we can prove that derivatives of
the functions wu, h, 8§ of any order are continuous in the closed region 0
if the boundary 231 1is sufficlently smooth.
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The Fredholm theorem implies that (3.4) is solvable for any ue H,. Equa-
tion (3.4) is determined by the operator

0 == Au.
We shall now show that 4 1s a bounded operator acting from 4, into FHe.
Taking the scalar product of (3.4) and ¢ , we find, as above, that

(8, 0y, = \ w0 dx <july, 101,
2

The imbedding of Hg in L, implies the boundedness of the operator 4
System (2.4) becomes the .system

u— R, Kh =K, lu—K (u-V)u + R K, (h-V)b

m U Xy

. , 3.5
h—-RmKhux':—aRsI\h(u-V)h1—1%’51{,1 (h-V)u (3.5)
or, in the space # , Equation
f— R K f= 7»1’(2{'+K3f (K f=K ,Au)
Lemma 3.2 . The operators -X,, X,, X; are bounded and completely
continuous.
The Lemma follows from the complete continuity of the operators X, and
¥, . Let us show, for example, the complete continuity of the operator

Bf=Ky (u-y)h, which acts from X 1into #, . We have

(BE, ¥y, = (K,, (w-V)h, W)y, =@ Vbpir=— (Vv @36
Q

ey

From this we have the estimate
(BE, Oy, < Cy 19, duli I,
Replacing ¢ by p»f , we obtain
| Bl < Clully, Iy, <CILR, @.7)
which implies the boundedness of the operator 5 .
From (3.6) we find (*) that for some sequence g™
L(BE™ — BE™, ) 1< CAE™ o, 1™ ) 1% i, | € — £,

When § has been replaced by Bf™ _ Bi™  the complete continuity of
the operators [8 and 10] from #, into L, implies the complete continuity
of the operator 5 .

The operator in the left-hand slde of (3.5) 1is invertible.

In fact, taking the scalar product of (3.5) and ¢ and setting the right-
hand side equal to zero, we obtain

£ Dy —R, (K £, Dy=0

but X
(Kt Dy = (K by, Wy A (K, By = 3 (b u+u b)dz="0 (3.8)

£

So that
& Dy =0 f=0

By the Fredholm theorem, the completely continuous operator I — R,X, has
an inverse L which is bounded. In fact, by virtue of (3.8},

M — Rty = Q8B+ REIK B 5 B, 1K, i )" > 1

*)  Notation: |f[p, = [ul +[hiL..
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This implies [11] the boundedness and {by virtue of its linearity) the
continulty of the operator L .

System (3.5) or (1.1} is thus equivalent to the operator equaticn

f=ALK,f +LKf =K (f, A) (3.9)
Similarly, linear system (1.4) becomes the system
u—RmKuhx,= AK, (Kaul)l, h_RmKh“a~,= 0 (3.10)

with the corresponding operator eguation
f= ?\.LKu (Kgul)l (3.11)

Since the operator L 1is continuous and the operators KX, and %, com-
pletely continuous, the operator k¥ in (3.9) is completely continuous. We
shall show that the right-hand side of (3.11) is the Frechet differential of
the operator ¥ . To do this we must demonstrate that

1K (£, 8) —ALK, (Kqu) 1y = |ALKf — ALK, (Kqu)l + LKy < CIEE,
By virtue of the linearity of the operators L and ¥, it is sufficient
t t
o estimate | Au — Koy, NH.' I st’"H

The estimate of the operator K, follows from (3.7), while for the differ-
ence Au — Kgu, (3.4) gives us

| (Au — Kquy, ®)gry1 =PI { - 9)00 da] < Cy 101, fuly, I @,
O

Setting ® = Au — Kyu; and making the substitution § = 4u , by virtue
of the boundedness of the operator 4 we have

| 4w — Koy |y < Clully <ClEly

4. Let us consider the possibility of the existence of steady~-state solu-
tions {1.1),{1.2) which are different from (1.4). Let

(“r “)Hu

Ao = inf [T A o

(4.1)

where the lower'bound is taken over all the solenoidal vector functions
ucH, .

In [2 and 3] 1t is shown that 1, 1s the critical Rayleigh number for the
steady-convection equations. If an external magnetic field is present, the
following theorem is valid,

Theorem 4,1, If problem (1.1),(1.2) has a nontrivial solution,
then X > Xy .

Let problem {1.1),{1.2) have a nontrivial solutlon. Taking the scalar
products of (1.1) and w, h, A, 8 and adding, we obtain

(u, u)gu + (b, by A IO, O)g, —2(u;, 0)) =0 (%.2)

As 1s evident from ik.eg and the unique solvabllity of (3.4), the solu-
tion of problem (1.1),(1.2) differs from zerc only for u‘;é 0.

It 1is well xnown [12] that
min {(@, 0)g, — 2 (x, 0)] = — (Kgqu;, Koy, D,
where the minimum is taken over all 6 & H. ‘
From (4.2) it follows that:
(u, u)Hu—{— (h, h)Hh—— A {(Kgu,, KG”I)H9<0
and by virtue of (%.1) we find that Ay, ~X < O . 'The theorem has been proved.
The theorem implies that with X = A,, problem (1.1),(1.2) has only a
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trivial solution. Thus, the critical Rayleigh number does not diminish upon
the imposition of an external magnetic field. The constant magnetic field
stabilizes the equilibrium of the liquid.

let us make use of the theory of blfurcations of nonlinear operator equa-
tions([13§ in our search for steady-state solutions of (3.9) which differ
from {(1.3).

The real number i, 1s called the bifurcation point of the operator X
if for any e , &> 0 1t is possible to indicate an elgenvalue A of the
operator K such that | — ;] < & and that Equation (3.9) has at least
one eigenvector f such that |ifll <e .

The results of Krasnosel'skii.[13] imply that the bifurcation points of
%he operator K can only be the eigenvalues of 1ts Frechet differential
3.10).
If A, , an eigenvalue of problem (3.10), is of odd multiplicity (*), then
A; 1s the bifurcation point of the operator KX . Corresponding to thils point
1s a continuous branch of the elgenvectors of operator K& . The parameter
X 1s real and positive.

5. Let us prove the exlstence of positive elgenvalues of (3.11). Opera-
tor equation (3.11) is equivalent to system (3.10).

Replacing u in the dynamic equatlon by its value as determined from the
induction equation, we reduce (3.10) to an operator equation for u ,

li] ou .
u— R K, 5 Ky g =M, (K 1 (5-1)

After determining w from (5.1), we find h and # from the induction
and heat conduction equations,

h= RmKhux.’ 6 = Kgu;
The operator in the right- and left-hand sides of (5.1) are linear, posi-
tive, completely continuous, and selfadjoint in #, . In fact,
1 i} ou ¢ 0 du g ou v
— (K“—'J:E-Kha_ic;",)}{u_ "'SWKh—aEvdxz' Kh_ax;; —0;3-dx=
Q
u

=(r 7} . ov )
—< h Oxg ’ Ky O Hy,
(K (Kgu) 1 Vg = S Ky, de = (Kyuy, Koo,
Q

This implles the following theorems and lemma.

Theoren 5.1 . There exists a denumerable number of elgenvalues
of system (1.4) 0 <A <CAy<<...<XAp— -+ 00. The corresponding system of
functions (w,, h,) is complete in # . (The system ¢, 1s complete in Ho) o

Lemmaea 5.1 . The eigenfunctions which corresond to various eigen-
valyes A and A* of Equations (1.4) satisfy the following orthogonality

condltlions: "
(u, w )Hu + (h, h*)Hh = (f, f*); =0, (0, e*)He =0 (5.2)

eigenvalue ), with an odd number of associated elgenvectors 1s a
bifurcation point of Equation (1.1).

As in [2 and 12], the problem of finding the elgenvalues and elgenfunc-
tions of (5.1) can be reduced to the problem of minimizing the functional (##)

*) The multiplicity of the elgenvalue A of the operator X 1s the dimen-
sionality of the subspace spanning the eigen- and adjoint vectors correspond-
ing to the characteristic number i .

##) The equivalence of problem (1.4) to ? variational problem (which differs
somewhat from (5.3)) 1s demonstrated in L4].
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(u, u)gu"i‘ Ry? (X Al Kh“x.)
A =J(u) = Ko, Kou) (s H) (5.3)

Theorem 5,2 . The problem of finding the elgenvalues and elgen-
i‘unct):ions of system (1.4) 1s equivalent to the minimum problem for functional
5.3).

Let us show that functional (5.2) is bounded from below.
In fact, by the Cauchy-Buniakowskl inequality,

(Ko Kooy < ( § Ko a2 < (§ gt da) (§ 0rd2)
Q

and making use of the Poincaré inequality,
S 02 de <Oy 5 V6.V8 dz = C1 (Kou;» Kot )y
0 £

and the theorem of imbedding of ;‘?,, in L, we obtain

(Koup, Kou)) < C (u, “)Hu (5.4)
From (5.3) and (5.4) we find that
J@y>c?

The minimum problem for functional {5.3) has 8s its consequence the fol-
lowing theorem ?12] .

Theorem 5.3 . Let A, be the exact lower bound of the functional
J(u) . Then, there exists a vector-function u,& H, such that J(w,) =14,
where A, 1s the smalliest eigenvalue, and W, (h,, 6,., respectively) is the
eigenfunction of system (1.4?.

Theorem 5.%. Let 0<<ASA<:...Shy be the eigenvalues of
{1.4), and let (u,, ha) be their associated eigenfunctions orthonormalized
in the sense of {5.2)., Then, there exists a function um,leHu, which mini
mizes functional (5.2) under the additional conditions

(Wyy Upp )Hu+ (b1 hm)Hh =0, 0,.1 9Oy )H0 =0 (m=1,2...n)

where RN,.. s 8a.,. can be determined from w,,, from the induction and heat
conduction equations.

The triplet W,.: » Masy » ..y 15 the eigenfunction of (1.4) which cor-
responds to the number .
A = J (@)

In actual computations, it is more convenient to write (5.2) in the form
. -1
A= @=(\ 0, d+ § h, b, dz) (§ 0,,9.,d2)
Q

Here h and 8 are the solutions of the linear induction and heat con-
duction equations of (1.%) with boundary conditions (1.2). Similar results
are obtaineble in the case where the liquid is enclosed 1in a dlelectric.
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REMARK ON THE PAPERS BY R.V.BIRIKH

"ON THE SPEOTRUM OF SMALL PERTURBATIONS OF PLANE~PARALLEL COUETTE FLOW"
PMM Vol.28, W 4, 1965, and
"ON SMALL FERTURBATIONS OF A PLANE-PARALLEL FLOW WITH CUBIC VELOCITY PROFILE"
PMM Vol.30, B 2, 1966

(ZAMECHANIE X RABOTAM R.V,BIRIKHA
"0 spektre malykh vozmushchenil ploskoparallel'nogo techeniia Kuetta"
PMM T.29, Vyp.4, 1965, 1
"0 malykh vozmushchenilakh ploskoparallel'nogo techenilia s kubilcheskim
profilem skorosti" PMM T.30, Vyp.2, 1966)

PMM Vol.30, K 6, 1966, p.1147

R.V.BIRIKH
{Perm')

In the second of the above papers, when the spectrum of decrements of normal
perturbations of a flow with cubic veleoelty profile was discussed, the pos-~
8ibility was indicated of the existence of a vibrational instability in thils
flow at high Reynolds numbers. In order to verify this hypothesis, a new



